Graphs with equal Independence and Annihilation Numbers

نویسندگان

  • Craig E. Larson
  • Ryan Pepper
چکیده

The annihilation number a of a graph is an upper bound of the independence number α of a graph. In this article we characterize graphs with equal independence and annihilation numbers. In particular, we show that α = a if, and only if, either (1) a ≥ n2 and α ′ = a, or (2) a < n2 and there is a vertex v ∈ V (G) such that α(G − v) = a(G), where α is the critical independence number of the graph. Furthermore, we show that it can be determined in polynomial time whether α = a. Finally we show that a graph where α = a is either König-Egerváry or almost König-Egerváry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree sequence index strategy

We introduce a procedure, called the Degree Sequence Index Strategy (DSI), by which to bound graph invariants by certain indices in the ordered degree sequence. As an illustration of the DSI strategy, we show how it can be used to give new upper and lower bounds on the k-independence and the k-domination numbers. These include, among other things, a double generalization of the annihilation num...

متن کامل

Domination, eternal domination and clique covering

Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique c...

متن کامل

On the Annihilation Number of a Graph

In this note, we introduce a graph invariant called the annihilation number and show that it is a sharp upper bound on the independence number. While the invariant does not distinguish between different graphs with the same degree sequence – since it is determined solely by the degrees – it still outperforms many well known upper bounds on independence number. The process which leads to the ann...

متن کامل

The critical independence number and an independence decomposition

An independent set Ic is a critical independent set if |Ic|−|N(Ic)| ≥ |J | − |N(J)|, for any independent set J . The critical independence number of a graph is the cardinality of a maximum critical independent set. This number is a lower bound for the independence number and can be computed in polynomial-time. Any graph can be decomposed into two subgraphs where the independence number of one s...

متن کامل

Classes of Graphs for Which Upper Fractional Domination Equals Independence, Upper Domination, and upper Irredundance

This paper investigates cases where one graph parameter, upper fractional domination, is equal to three others: independence, upper domination and upper irredundance. We show that they are all equal for a large subclass, known as strongly perfect graphs, of the class of perfect graphs. They are also equal for odd cycles and upper bound graphs. However for simplicial graphs, upper irredundance m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011